
A Compiler Approach to Scalable Concurrent

Program Design

Ian Foster
Stephen Taylor

Computer Science Department
California institute of Technology

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1992 2. REPORT TYPE

3. DATES COVERED
 00-00-1992 to 00-00-1992

4. TITLE AND SUBTITLE
A Compiler Approach to Scalable Concurrent Program Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
California Institute of Technology,Computer Science
Department,Pasadena,CA,91125

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

39

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Compiler Approach to Scalable Concurrent
Program Design1

Ian Foster
Argonne National Laboratory

and

Stephen Taylor
California Institute of Technology

Abstract

The programmer's most powerful tool for controlling complexity in program design is
abstraction. We seek to use abstraction in the design of concurrent programs, so as to
separate design decisions concerned with decomposition, communication, synchronization,
mapping, granularity, and load balancing. This paper describes programming and com-
piler techniques intended to facilitate this design strategy. The programming techniques
are based on a core programming notation with two important properties: the ability to
separate concurrent programming concerns, and extensibility with reusable programmer-
defined abstractions. The compiler techniques are based on a simple transformation system
together with a set of compilation transformations and portable run-time support. The
transformation system allows programmer-defined abstractions to be defined as source-
to-source transformations that convert abstractions into the core notation. The same
transformation system is used to apply compilation transformations that incrementally
transform the core notation toward an abstract concurrent machine. This machine can
be implemented on a va,riety of concurrent architectures using simple run-time support.

The transformation, compilation, and run-time system techniques have been imple-
mented and are incorporated in a public-domain program development toolkit. This
toolkit operates on a wide variety of networked workstations, multicomputers, and shared-
memory multiprocessors. It includes a program transformer, concurrent compiler, syntax
checker., debugger, performance analyzer, and execution animator. A variety of substan-
tial applications have been developed using the toolkit, in areas such as climate modeling
and fluid dynamics.

'This research is sponsored by the Defense Advanced Research Projects Agency, DARPA Order 8176,
monitored by the Office of Naval Research under contract N00014-91-J-1986, and by the National Science
Foundation under Contract NSF CCR-8809615.

1 The Approach

This paper describes a compiler-based approach to the design of scalable concurrent pro-
grams. The approach is motivated by the view that significant advances in concurrent
programming will not be achieved through compiler strategies that accept existing sequen-
tial programs. The design and implementation of new concurrent programming strategies
and algorithms are our primary concerns; we seek simple, flexible tools to support this
activity.

1.1 Abstraction

The programmer's most powerful tool is abstraction, the ability to neglect unimportant
details until the appropriate time. Modern computer science has given us two basic meth-
ods by which to use abstraction in program design: information hiding [34] and stepwise
refinement [41]. Both of these development methodologies at tempt to separate concerns
and place implementation details in unique components of a program. These strategies
improve program clarity, localize change thus improving maintainability, and isolate sys-
tem dependencies, thus improving portability. These concepts are the foundation upon
which we strive to design large, correct, maintainable computer programs.

These basic program development methodologies are in principle directly applicable
to concurrent program design. However, this requires the ability to delay and to separate
design decisions specific to concurrent programming. At the lowest level these decisions
concern the techniques used to achieve communication and synchronization and the def-
inition of architectural specifics, such as connection topology and number of computers.
During the design process there are other concerns: program decomposition, the granu-
larity of the components, the mapping of components to computers, and load-balancing
strategies. It should be possible to consider these concerns separately, isolate them in
unique areas of a program, reason about alternatives, and reuse common strategies.

Unfortunately, concurrent programming systems often force a premature commitment
to important design decisions or entangle unrelated aspects of a design. For example,
designs expressed in terms of a small number of heavyweight processes necessarily encap-
sulate decisions concerning granularity; these decisions are difficult to change as a program
scales to larger numbers of computers. An early commitment to a globally shared data
structure, as an means of communication between subprograms, may hinder subsequent
partitionings for execution on multicomputers. Many first-generation message-passing
systems equate a process with its location, immediately entangling the unrelated con-
cept s of mapping, communication, topology, and number of computers.

1.2 Basic Concepts

Early commitments in program design can be avoided by adopting an abstract, architec-
turally independent view of communication, synchronization, and concurrent execution.
This architectural independence can be achieved by using a programming model based on
four simple concepts: monotonicity, concurrent composition, choice between alternatives,

and separation of sequential code [19]. The notion of monotonicity provides an abstract
model of communication and synchronization. Concurrent composition is used to specify
opportunities for parallel execution. Choice is used to select between alternative pro-
gram actions. Finally, separation of sequential code simplifies the use of state change and
sequencing.

These concepts are language independent and have been incorporated into a com-
mercially available programming system, Strand [21]. In this paper, we work with a
second-generation system in which programs are expressed in a program composition no-
tation (PCN) [8]. This notation provides a uniform treatment of concurrent composition,
non-deterministic choice, and sequential programming. In addition, a simple syntax and
the use of recursively-defined data structures allows PCN programs to be represented
concisely as data structures. These data structures can in turn be manipulated by PCN
programs that implement source-to-source transformations.

PCN programs may operate either concurrently, with communication and synchroniza-
tion, or sequentialZy, by modifying memory. Yet they have the beautiful compositional
qualities and declarative semantics that are generally associated with only functional and
logic programs. Furthermore, PCN programs may incorporate pre-existing components
written in sequential languages such as C, C++ or Fortran, thus supporting migration
from sequential to concurrent programming.

1.3 Programmer-defined Abstractions

Although concurrent programming introduces additional concerns that are not present
in sequential programming, these concerns are frequently application-independent. For
example, when applying domain decomposition to problems of static structure, we must
address the issues of partitioning, communication, mapping, and granularity. However,
these issues are for the most part associated with the technique of domain decomposi-
tion rather than the problems to be decomposed. Similarly, although irregular computa-
tions typically require load-balancing strategies, the strategy can usually be specified in
application-independent terms.

This independence between problems and generic solution strategies can be exploited
by the use of domain-specific, but problem-independent, abstractions. These capture, in
a reusable form, application-independent aspects of program design such as scalability
constraints, partitioning, mapping, and granularity. The implementation of an abstrac-
tion is combined with problem-specific information to form a complete application. In
previous work, we have explored these ideas in the context of mapping [39], self-scheduling
computations [HI, and tree reduction problems [20]. In this paper, we show how the speci-
fication and implementation of such abstractions can be incorporated into the compilation
process.

1.4 Compiler Techniques

We seek techniques that permit efficient implementation of concurrent programs, ex-
pressed using the concepts described in previous sections, on a wide range of parallel

architectures. These techniques must permit applications expressed using high-level ab-
stractions to attain both the communication and the computational performance of the
underlying hardware. In particular, we wish to ensure that communication and synchro-
nization overheads are directly transferred to the application, without multiple levels of
system overhead, thus allowing hardware message performance levels to be attained at the
application level. Similarly, we seek to minimize the impact of synchronization overhead
on sequential code, allowing sequential compiler performance to be achieved in sequential
code fragments.

The approach we have developed to meet these goals is based on the use of source-
to-source transformation techniques. Successive transformations incrementally convert
concurrent programs expressed in terms of programmer-defined abstractions into low-level
executable parallel code. These transformations are applied by a simple programmable
transformation system that allows complex transformations to be specified as concurrent
programs.

As shown in Figure 1, the compilation pipeline involves four main stages. The first
stage transforms application programs expressed in terms of predefined or programmer-
defined abstractions into PCN. The result of this process is a collection of equivalent
programs that implement the abstractions in terms of our four basic concepts (c.f. Sec-
tion 1.2). The second stage applies a set of compilation transformations to the entire pro-
gram produced by the first stage. These transformations incrementally transform PCN
programs toward a simple canonical form called Core PCN [22]. This canonical form is
a high-level representation of a fine-grain, concurrent programming model in which pro-
cesses receive messages, make simple decisions, perform atomic actions to modify memory,
and spawn additional processes.

The third stage translates Core PCN programs into the instruction set of an abstract,
fine-grain, concurrent machine. This machine provides basic services such as process
scheduling, message-passing communication, synchronization, data structure manipula-
tion, and memory management. The abstract machine incorporates atomic operations
that modify data structures and integrates the ability for concurrent programs to invoke
pre-existing sequential routines written in C, C++, and Fortran. These routines are
compiled with standard native-code compilers; the object code is linked into executable
images by a fourth linking and assembly stage.

The abstract machine can be implemented in a variety of ways that trade off efficiency
and portability. A general-purpose run-time system, or emulator, has been produced that
executes the instruction set of the abstract machine directly [22]. This emulator is writ-
ten in a portable subset of C that allows it to operate on a wide class of architectures; it
typically compiles to a binary image of less than 100 Kbytes. Currently, the emulator op-
erates on Sun, Next, IBM, DEC, SGI, and HP workstations, on Intel iPSC 386/860/Delta
and Symult S2010 multicomputers, and on Sequent Symmetry and Sun shared-memory
multiprocessors. The resulting programs have impressive and predictable performance
characteristics across a variety of architectures [lo, 271.

An alternative abstract machine implement ation technique further compiles the en-
coded abstract machine instructions to make use of specific architectural features. For
example, most machines provide high-performance floating point accelerhtors. The Mosaic

Application

r - - - - - - - - r - - - - - - - - - - I - - - - - - - - - -
I I

I Existing I I Predefined ; New
I
I

I I I I

C, C++, I I Abstractions 1 Abstractions I

I Fortran I I
I

I

- - - - l - - - - . '
I - - - - - - - - - - J ' - - - - - - - - - I

Standard
Compilers

Abstract Program
PCN + Abstractions

Abstraction Removal

- PCN

Compilation Transformations I
1 Canonical Form

Encoding r"l Core - PCN

I I - Object Code
i

LinkingIAssemble
-

d C 0 - /

/
\

Native Code - _ _ - - - - - - , 4 - 0 0 I I Abstract Code
e

\ . /

-

0
.

/
\

Networks iPSC 860 J-Machine Mosaic Portable Emulator

Figure 1 : Compilation Strategy

architecture provides high-performance message-handling and fine-grain process schedul-
ing [36]. The J-machine also provides high performance variable and code-manipulation
hardware [El. All of these features may be used to replace unique components of the
emulator design, providing high-performance, native-code versions of the system. Imple-
mentations of this type are currently under construction.

1.5 Summary

The important characteristics of this approach are as follows. We employ a core pro-
gramming notation based on the four concepts of monotonicity, concurrent composition,
choice between alternatives, and separation of sequential code. This allows us to apply
standard program development methodologies to cope with typical parallel computing
problems. Common abstractions can be isolated in a reusable form and implemented by
using source-to-source transformations. Both these transformat ions and the rest of the
compiler are implemented as concurrent programs. A highly portable run-time system
can be used to execute programs on a wide variety of architectures. Alternatively, spe-
cialized versions of the system can be developed for architectures of particular interest,
by retargeting the final stage of the compiler.

2 Related Work

The benefits of an architecturally independent model of parallel computation have been
widely recognized in the computer science community [29, 28, 25, 1, 71. The notion of
monotonicity is at the heart of several such programming models, notably concurrent
logic programming [l 1 , 241, functional programming [28, 26, 91, and ob ject-oriented pro-
gramming [I]. Similarly, concurrent composition underlies such diverse approaches as
C SP [29], concurrent logic programming, functional programming, and Unity [7]. Unfor-
t unately, these models either do not support concurrent source-to-source transformations
or embed the basic ideas in complex language designs and programming paradigms that
have little to do with concurrent programming. Furthermore, few approaches are devel-
oped to the point where they can be used to develop large-scale applications. We consider
the basic ideas to be sufficient in and of themselves and have worked to develop them as
a practical basis for concurrent programming [19].

The integration of sequential and concurrent programs has been the focus of a number
of other systems, notably large-grain dataflow and Linda [2, 61. However, we insist upon
a clear separation of sequential and concurrent components in order to conveniently apply
source-to-source transformation techniques and build programming abstractions. Previ-
ous work on reusable abstractions in parallel program design include the Argonne monitor
macros [4] and Schedule package [17], and Cole's algorithmic skeletons [14]. However, in
none of these approaches is support for abstractions incorporated into a compiler.

An alternative to our compiler techniques is to use run-time techniques such as higher-
order functions [28, 311. However, we prefer to use compile-time methods based on source-
to-source transformations so as to avoid run-time overheads and achieve our goals of

efficient communication, synchronization, and sequential execution. The use of "meta-
programs" to specify program transformations is common in declarative programming [3,
28, 38, 12, 5 , 421. Novel features of our approach include the integration of a pro-
grammable transformer into the compilation pipeline, linguistic support for invocation
of transformations, and the use of set-oriented abstractions for specifying transforma-
tions. An alternative approach to the implementation of compile-time transformation
uses meta-interpreters to specify transformations and partial evaluators to compile away
the overhead of interpretation [35]. However, we find the complexity of this approach
unnecessary and prefer to implement transformations directly.

The abstract machine design that we employ builds on our previous work in run-
time support for concurrent programming [19,39]. Unlike our previous designs and other
uniprocessor systems [25, 30, 401, the PCN abstract machine emphasizes mutable data
structures and the integration of sequential procedures, written in languages such as C,
C++, and Fortran, into concurrent programs. In addition, we have focused on minimality
in order to achieve a higher degree of portability and maintainability.

3 Programming Notations

Recall from Section 1.2 that PCN provides a uniform and convenient notation for the
use of four programming concepts: monotonicity, concurrent composition, choice between
alternatives, and separation of sequential code. The syntax of PCN is similar to that of
the programming language C. Every procedure has the following form (k20):

procedurename(Arg,,Arg2,. . .,Argk)
variabledeclarations;
composition

where a composition has the form { operator PI ,P2,. . .,P, } (n > 0) and operator defines
how to execute the component procedures Pi. Each component Pi is an assignment,
procedure call, or nested composition.

An operator can b e one of three basic operators or a programmer-defined operator.
The basic operators signify concurrent execution (I I), choice between alternatives (?), or
sequential execution (;). Concurrent execution specifies that the components PI, . . ., P,
are executed in any order or at the same time. Choice specifies that only one component
is executed; the determination of which to execute is based on a simple Boolean condition.
Sequencing specifies that the components are executed in textual order. A programmer-
defined operator is enclosed in angle brackets (e.g., <oP>) and signifies the use of an
abstraction defined by some transformation. In this case, the appropriate transformation
is applied to the procedure at compile time to yield a new procedure employing only the
basic operators.

The following simple example illustrates the central PCN concurrent programming
concepts and, computes the minimum of four numbers.

minimum(x,y,result)
{ ? x >= y -> result = y,

x <= y -> result = x
1

The min4 procedure is a concurrent composition of three components (1). The first
computes the minimum of a and b, producing result min 1 (2). The second computes the
minimum of c and d, producing min2 (3). Finally, the third computes the minimum of
minl and min2 to produce the final result (4). The minimum procedure uses choice to
compute the minimum of two numbers (5). If x >= y, then the result is y (6). If x <= y,
then the result is x (7). If x and y are equal, then either choice gives the correct result.

Monotonicity. PCN uses an architecturally independent method of specifying com-
munication and synchronization: Components of a parallel composition may exchange
information via shared monotone variables. A monotone variable is initially undefined; it
can be assigned at most a single value and subsequently does not change. A procedure
that requires the value of a variable waits until the variable is defined.

A shared monotone variable can be used to both communicate values and synchronize
actions. Notice how the first call to minimum (2) communicates the value minl to the
last call (4) by variable sharing; similarly, the second call to minimum (3) communicates
the value min2 to the last call (4).

Consider the effect of the third minimum procedure executing first. In this case the
values of minl and min2 have not yet been produced: and so the procedure call must wait,
or suspend, until both values are available. This simple data availability test provides a
powerful mechanism for program synchronization.

Monotonicity is valuable for two reasons. First, a program can be understood in isola-
tion: choices made on the basis of monotone variables cannot change. This attribute eases
the understanding of concurrent programs and avoids errors caused by time-dependent
interactions. Second, the concept is trivial to implement efficiently: it maps directly to
pointers within a single computer and to message passing between computers. Once avail-
able, the value of a variable can be propagated throughout a parallel machine without
concern for consistency of copies [39]. Hence, programs can operate on distributed shared
data without locking protocols or complex synchronization schemes.

Concurrent Execution. Procedure calls in concurrent compositions are able to
execute when their data is available; if data is available, a procedure is guaranteed to
execute eventually. The order in which procedures execute is not otherwise constrained.
In particular, procedures can be executed in any order or in parallel.

A consequence of monotonicity and concurrent execution is that it is not important
where and when procedures execute. Hence, decisions concerning partitioning, mapping,

and granularity can be isolated from the rest of the program design process [a] .
Choice. Programs must inevitably choose between alternative actions; this choice is

based on the values of variables. We adopt a simple method of specifying program actions
that makes such choices explicit and avoids overspecification [16]. This is illustrated in
the minimum procedure. Informally, the two rules in this program specify two alternative
actions, each with an associated condition. The program can be understood in terms of
pre- and postconditions: if X>Y holds, Z=X will hold eventually, while X<Y leads to the
postcondition Z-y and X=Y to the postcondition x=~=z.

This intuitive understanding of the program is valid because of monotonicity and
concurrent execution. The monotonicity of x and y ensures that the preconditions are
also monotone. For example, once X ~ Y , this condition holds forever and cannot be af-
fected by actions performed by other programs. Concurrent execution ensures that once
a precondition is satisfied, a valid postcondition will eventually be reached.

Separation of Sequential Code. State change and sequencing are familiar concepts
from sequential programming. State change permits efficient management of memory
via destructive operations to storage locations; sequencing permits state changes to be
organized without the overhead of explicit synchronization operations on each access to
data [23]. Although these concepts are valuable from a programming perspective, they
are dangerous in parallel programs if used in an unrestricted manner, because of the
possibility of race conditions. We employ these concepts under the constraint that shared
variables are constant, or monotone, during concurrent execution. This constraint can be
enforced by the programmer [21] or by the compiler using copying [8].

In this context, a procedure expressed in a conventional language such as C, C++,
or Fortran can be viewed as an atomic black box. This box simply computes an input-
output relation. Hence, it can be characterized in terms of pre- and postconditions in the
same way as parallel program components. This integration of sequential languages into
a parallel programming context has a number of benefits. It achieves a clean separation
of concerns between sequential and parallel programming, provides a familiar notation for
sequential concepts, and enables existing sequential code to be reused in parallel programs.

Mapping. Each invocation of minimum in the min4 procedure can be viewed as a
separate locus of control, or process. Annotations of the form @location(. . .) can be added
to the min4 procedure to specify how processes are mapped to computers, for example:

In the absence of the annotations, all calls to minimum operate at the same com-
puter. This interleaving at a single computer allows overlapping of communication and
computation., If the location annotations are present, they indicate that a process should
execute at an alternative computer within some virtual machine 1331. Virtual machines
play two primary roles in program design: to reshape the physical machine to a form more

convenient for programming, and to provide scalability by expanding and contracting the
physical machine to employ any arbitrary number of computers. Virtual machines may
also be used to decompose a physical machine into a collection of submachines, each of
which may be allocated a different computation. The combination of location .annot ations
and virtual machines allows concurrent programs to be written that recursively unravel
over a parallel architecture [39].

Programming Techniques. Extensive use of these programming ideas has con-
vinced us that they are sufficient for all practical purposes. In particular, it has proved
possible to develop a small set of concurrent programming techniques that address the vast
majority of issues that arise in concurrent programming. These techniques support the
organization of arbitrary communication protocols, termination detection in distributed
computations, the construction of distributed data structures, and the implementation of
atomic transactions [21, 81.

4 Example Programming Problem
Throughout the rest of this paper, we will repeatedly return to a single example program
to demonstrate our programming, compilation, and run- time techniques. This program
is a simplied implementation of an application developed to simulate the atmospheric cir-
culation over the globe [lo]. The actual code comprises approximately 750 lines of PCN
code, 1,400 lines of Fortran, and 870 lines of C. It executes at 2.5 Gflops on the 528-
computer Intel Delta and is portable across a wide range of architectures with predictable
performance characteristics [lo]. The code is typical of other application codes devel-
oped at Argonne National Laboratory and Caltech (e.g., 1271). These codes involve both
subst ant ial computational components, requiring efficient uniprocessor computation, and
complex communication protocols, requiring efficient communication and synchronization.

The application involves the parallel implement at ion of a control volume met hod for
solving partial differential equations on a sphere. This method is developed by using
the icosahedral-hexagonal discretization of a sphere shown in Figure 2(a). This provides
greater uniformity than the latitude-longitude grid commonly used for the same purpose.
The icosahedral discretization can be structured as ten rhombi, each containing an N x N
mesh, and two polar points. This organization is illustrated in Figure 2(b).

A parallel algorithm is obtained by the application of domain decomposition tech-
niques. Each rhombus is decomposed into a number (say C2) of subdomains, giving a
total of 10C2 + 2 subdomains, two containing a single polar point and the others each
containing (NJ/C)~ points, where N2 is the total number of points in a rhombus. The
control volume method computes the new value of each grid point at each time step as a
function of the previous value of that grid point and a small number of neighbors.

Our implementation of this algorithm is separated into two parts: a reusable abstrac-
tion and the application code. The abstraction encapsulates the concurrent programming
concepts, defining spherical decomposition, communication structure, and mapping to
computers. The application code implements the numerical method for a single subdo-
main. An operator icosahedron(c) is used to combine the abstraction with the application

Figure 2: Icosahedral Structure

Figure 3: Octahedral Mesh Structure

code, so as to form a complete program. This operator takes as arguments the names of
the procedures to be executed at polar and nonpolar subdomains. It triggers application
of a source-to-source transformation that generates the necessary concurrent program.
For example, the following procedure composes the procedures controlvolume and pole
to implement a control volume method on the icosahedral grid.

main (c)
{ cicosahedron(c)>

controlvolume(),
pole0

1
For brevity, we work throughout this paper with the simpler octahedral grid illustrated

in Figure 3. This grid has only four rhombi and no polar points. In addition, a five-
point stencil is used throughout, meaning that each subdomain requires values from four
neighbors. This artificial problem is considerably more homogeneous than the icosahedral
grid, which has a mixed sevenlsix-point stencil with asymmetries at the poles. These
complications lead to a more complex communication structure than considered here, but
do not change the basic structure of the code or the principles involved in its design.

We show in Program 1 the application code developed for this problem. An octa-
hedron abstraction is used in a manner analogous to the icosahedron abstraction, and
the procedure controlvolume() is provided as the application-specific code to be executed
in each subdomain. As a consequence of the five-point stencil, this procedure is invoked
with eight arguments, representing input and output streams to four neighboring subdo-
mains. When first invoked, it allocates an array to hold the local subdomain, calls the C
language procedure C-initialize to initialize this array, and then calls the procedure com-
pute to perform computation. The latter procedure is defined recursively. It repeatedly
checks for termination (step<MAX-STEP), extracts and sends boundary values to its
four neighbors, receives boundary values from four neighbors, and calls the C language
procedure cupdate to compute a single step. The syntax no=[edge I no11 denotes the
sending of a message edge on a communication stream no; no1 represents the remainder
of the stream. The syntax ni ? = [n (n i l] denotes the receiving of a message n on a stream
ni; n i l denotes the remainder of the stream.

#define SUBDOMAIN-SIZE 3600
#define EDGE-SIZE 16
#define MAX-STEP 1000
#define NORTH 0
#define EAST I
#define SOUTH 2
#define WEST 3

main (c)
{ <octahedron(c)>

controlvolume()
1

/* Application main program */
/ * Name abstraction */
/ * Application-specific code * /

c~ntr~l~~l~me(ni,ei,so,wi,no,eo,so,wo) / * Application-specific code * /
double mesh[SUBDOMAINSIZE]; /* Allocate mesh */
{ ; c-initialize(mesh), / * Initialize mesh %/

compute(0,mesh,ni,ei,si,wi,no,eo,so,wo) / * Execute numerical scheme */
I

compute(step,mesh,ni,ei,si,wi,no,eo,so,wo)
double mesh[], edge[EDGESIZE];
{ ? step < MAXSTEP -> /* Until done ... */

{ ; cgetsdge(NORTH,edge,mesh), / * Get north edge */
no=[edge I nol], / * Send edge north */
c-getsdge(EAST, edge,mesh), / * Ditto for east */
eo=[edge I eol 1,
cget-edge(SOUTH,edge,mesh), / * Ditto for south */
so=[edge I sol],
cgetsdge(W EST, edge,mesh), / * Ditto for west */
wo=[edge I wol 1,
{ ? ni ? = [n 1 nil], ei ? = [e 1 eil], / * Recv from N and E*/

si ? = [s I sill, wi ? = [w 1 w i l l -> /* Recv from S and W*/
{ ; c-update(mesh,n,e,s,w), / * Update mesh */

step(step+l ,mesh,nil ,eil ,sil ,wil ,no1 ,eol ,sol ,wol)
1

1
11

default -> cdump(mesh) / * All done: dump */

Program 1: Octahedral Application Code

5 Transformation System

Recall that the simple structure of PCN programs allows a concise representation as data
structures. These data structures can in turn be manipulated by PCN programs, allowing
source-to-source transformations to be specified as concurrent programs that operate on
concurrent programs. .

5.1 Defining Transformat ions

To simplify the specification of transformations, we define an abstract data type that
implements a set. The elements of the set may be programs or program components such
as blocks and procedure calls. We provide operations that transform each element of a
set, split a set into subsets on the basis of a condition, compute a parallel prefix operation
over a set, and form the union of two sets.

Two additional operations support sets of programs. These operations compute unique
procedure and variable names.

When extended with the set data type, PCN becomes a powerful tool for implementing
arbitrary source-to-source transformations. The basic operations listed above provide
building blocks that can be used to implement more sophisticated operations. Libraries
of such operations have been constructed and form the basis for the implementation of
both the PCN compiler and abstractions such as icosahedron and octahedron. For
example, Program 2 implements a useful operation map-over that applies a specified
transformation (OP) to every procedure call in a program component. This can be invoked
in a call of the form

to produce a newset in which the transformation OP has been applied to every procedure
call in set. Program 2 uses choice composition and the match operator ?= to distinguish
program components representing procedures, blocks, lists of blocks, implications, and
calls. The recursive calls to map.-over incrementally break down the program structure
to isolate program calls. Finally, when a call is isolated, the supplied operator 'OP' is
applied at the end of the procedure.

Program 3 shows an example transformation defined in terms of map-over. This
somewhat artificial example produces a newset, identical to an input set except that
all procedures, other than those named procname, have calls to oldname renamed to

map-over(op,item,newitem)
{ ? item ? = procedure(id,args,decls,block) -> / * Body of procedure */

{ I 1 map-over(op, block,newblock),
newitem = procedure(id,args,decls,newblock)

1 9

item ? = block(blockop,bs) -> /* Blocks in composition */
{ I / map-over(op,bs,newbs),

newitem = block(blockop,newbs)
1 3

item ? = [blitems] ->
{ I 1 map-over(op,b,newb),

map~over(op,items,newitems),
newitem = [newblnewitems]

1 9

item ? = {" -> ",guard,body} ->
{ I I map-over(op, body,newbody),

newitem = {" -> ",guard,newbody)
1 9

default -> / * Apply operator */
'op'(item,newitem)

1

/* Blocks in list */

/ * Body of implication */

Program 2: Example Transformation Operation

be calls to newname. Note the use of the primitive operations split, transform and
union. The split operation calls named to decompose the input set into a set1 containing
procedures with the name procname and another set2 containing all other procedures.
The transform operation calls map.-over to apply the rename transformation to each
program call in set2, producing set3. Finally, the union operation is used to combine
set1 and set3 to form newset.

named(name,object,result)
{ ? object ? = procedure(id,args,decls,block) ->

{ ? name ='= id -> result = "true",
name ! = id -> result = "false"

1
1

rename(oldname,newname,oldcall,newcalI)
{ ? oldcall ? = call(id,args,mapping) ->

{ ? id == oldname -> newcall = call(newname,args,mapping),
default -> newcall = oldcall

11
default -> newcalt = oldcall / * Primitive (e.g., =) */

Program 3: Example Program Transformation

The conciseness of expression permitted by this approach is evidenced by a recent pro-
gramming experiment involving the remainder of the PCN compiler. This was originally
developed without the use of the transformation system. A new version written with the
transformation system implemented many additional optimizations and was nevertheless
only one third the size of the original code.

5.2 Transforming the Octahedron Example
We illustrate the use of the transformation system by implementing the octahedron ab-
straction. This implementation consists of two parts: an abstraction definition and map-
ping definition. The abstraction definition is responsible for generating a process and

communication structure required to represent the octahedral mesh. This yields a PCN
program in which mapping decisions are specified with respect to a virtual machine, by
means of abstract annotations on procedure calls. The mapping definition deals with
embedding the virtual machine into a particular physical machine. This separation of
concerns allows physical machine dependencies to be isolated in a unique transformation.
Typically, these dependencies can be encapsulated in a single procedure or library for a
given machine.

5.2.1 Abstraction Definition

The abstraction definition is implemented by a transformation that combines a library
with the application code given in Program 1. The library, given in Program 4, in-
corporates solutions to three distinct problems: the partitioning of the data domain into
disjoint subdomains, the organization of communication between subdomains to exchange
boundary values, and the mapping of subdomains to processors in a parallel computer. As
described in [lo], this code is developed by a series of refinement steps, each introducing
a solution to one of these problems.

The library code creates a process structure comprising 4c2 subdomain processes. Each
call to rhombus from within sphere creates c2 processes by calling the row procedure c
times, once per rhombus row; each call to row creates c subdomain processes.

Monotone variables are used to define the communication structure required for the
use of a five-point stencil. This structure, illustrated in Figure 4, allocates each subdo-
main communication streams to four neighbors. The procedure sphere establishes the
initial connections between the various rhombi, as shown in Figure 4 (a). These initial
connections are used to establish connections between the meshes created within each
rhombus. Each rhombus produces a list of communication streams on its north (nn) and
east (ee) sides and consumes a list of streams on its south (SS) and west (WW) sides;
these streams are used for communication between meshes in different rhombi, as in Fig-
ure 4 (b). Additional streams are created within the rhombus and row procedures for
communication between subdomains within the same rhombus. Notice that the rhombus
procedure eventually reduces to a concurrent composition of c2 startsubdomain pro-
cesses, at which point each subdomain has four communication streams to its north, east,
south, and west neighbors (n, e, S, w). Finally, each of these neighboring streams is
converted into a pair of input/output streams, as in Figure 4 (c).

Transformat ion. The octahedron abstraction requires only a trivial transformat ion.
Recall the following block from Program 1 that uses the octahedron operator:

This block is transformed into a call sphere(c) that invokes the sphere procedure of
the library in Program 4. In addition, the call to the subdomain procedure, in the library,
is renamed td call the subdomain procedure supplied by the abstraction i.e. controlvol-
umn. This transformation can be specified by the following procedure, that is applied

single
rhombus

\ single
subdomain

(b)

subdomain

Figure 4: Octahedral Grid Communication Structure

/ * Rhombus 0 */
/ * Rhombus 1 */
/ * Rhombus 2 */
/ * Rhombus 3 */

rhombus(r,i,j,nn,ee,ss,ww) / * Create a rhombus */
{ ? i > O ->

{ I I ee=[eleel] , / * Produce E stream */
ww?=[walwwla] -> /* Consume W */

{ I Iww l =wwla,w=wa)
row(j,r,i,j,nn,ssm,w,e), / * Create a row * /
rhombus(r,i-I ,j,ssm,eel ,ss,wwl) / * Recurse for more rows */

1 9

i == 0 -> {I 1 nn = ss, ee = I} /* Done with rhombus */
1

row(c,r,i,j,nn,ss,w,e) / * Create a single row * /
{ ? j >O ->

{I I nn =[n I nnl], / * Produce N stream */
ss?= [sa 1 ssla] -> /* Consume S */

{I I ssl =ssla,s =sa)
map(c,r,i,j,locn), / * Compute mapping location */
startsubdornain(n,em,s,w) @ locn, / * Map single subdomain * /
row(c,r,i,j-I ,nnl ,ssl ,em,e) / * Recurse: more subdomains */

1 9
j == 0 -> { I 1 e = w, nn =[I) / * Done with row */

1

startsubdomain (n ,e,s,w)
{I 1 n = {no,ni}, e = {eo,ei), / * Make 2 streams */

{ ? s ? = {si,so), w ? = {wi,wo) -> /* Get 2 streams */

Program 4: Octahedron Abstraction: Library Code

by the compiler to any program block containing the operator octahedron(c); it yields a
newblock and a set of new procedures.

octahedron(c, block,newblock,set)
{ ? block ? = block(octahedron(c),[proc]) ->

{ I (load("octahedron Jibrary",setl), / * I * /
transform(set1 ,map~ver(rename("subdomain",proc)),set), / * 2 ./
newblock = call("sphere",[c],[1) / * 3 * /

1
1
Notice the reuse of the operations map-over and rename specified in Section 5.1. The

primitive operation load is used to load the octahedron abstraction library into a new
set, set1 (1). Then, the map-over and rename operations are used to rename all calls
to "subdomain" (2). Finally, the original block is transformed to be a simple call to the
procedure sphere (3).

5.2.2 Mapping Definition

The library code shown in Program 4 uses the notation @locn to signify process mapping.
The mapping of the octahedral process structure to a parallel computer is encapsulated in
the procedure map, which is called to compute the location of each subdomain process.
One simple approach places one subdomain on each processor; this provides scalability
at the expense of some non-nearest-neighbor communication. This may be specified as
follows.

rnap(c,r,i,j,locn)
{ I I locn = r*c*c + i*c + j }

An alternative approach is to fold the octahedral mesh so as to ensure nearest-neighbor
communications [37]. In this approach, each processor is allocated four subdomains.
This constrains scalability, but is useful when remote communication is expensive. The
alternative can be implemented simply by redefining the map procedure. If the program
is to execute on a cx c mesh, with processors numbered 0 to c2-1 , then the new definition
is as follows.

map(c,r,i,j,locn)
{ ? r%2 == 1 -> locn = i'c + j,

r%2 == 0 -> locn = (c-j)*c - (id)
1

5.2.3 Developing an Alternative Mapping Strategy

The library and transformation presented in the preceding section succeed in isolating
mapping decisions in a separate map procedure. However, many details of the map-
ping remain in the abstraction library, making it difficult to reuse this library in other
circumstances or to apply mappings with a different structure.

To simplify the exploration of alternative mapping strategies, we have developed tools
that allow mappings to be specified with respect to a virtual machine. Recall that a
virtual machine is an abstract architecture that is convenient for solving a programming
problem. This approach can be generalized to allow the composition of multiple virtual
machines in a hierarchy. This allows elements of the virtual machine structure to be
isolated for reuse as shown in Program 5.

sphere(c)
{ I I rhombus(c,c,nO,eO,e3,n3) @ mesh(O), / * Map mesh 0 */

rhombus(c,c,nl ,el ,eO,nO) @ mesh(1), / * Map mesh 1 */
rhombus(c,c,n2,e2,el ,nl) @ mesh(Z), / * Map mesh 2 ./
rhombus(c,c,n3,e3,eZ,n2) @ mesh(3) / * Map mesh 3 */

1

rhornbus(i,j,nn,ee,ss,ww)
(7 i > O ->

{ I I . - * ,

row(j,nn,ssm,w,e),
rhombus(i-1 ,j,ssm,eel ,ss,wwl) @ south / * Map south */

i -- 1 3

-- 0 -> { I 1 nn = ss, ee = u}
1

row(j ,nn,ss,w,e)
{ ? j > O ->

{ I I * * * J

mesh(n,em,s,w),
row(j-I ,nnl ,ssl ,ernye) @ east

1 9

j == 0 -> { I 1 e = w, nn = [I)
}

/ * Map east */

Program 5: Virtual Machine Mapping

For example, an octahedral virtual machine can be constructed by composing four
mesh submachines, with each submachine containing c2 virtual processors. The octahe-
dral virtual machine supports a mapping annotation @mesh(n) that allow us to address
the individual mesh machines. Within a mesh virtual machine, we address individual
virtual processors using mapping annotations @south, @east, etc., that specify relative
locations. This approach simplifies the specification of mapping within an application.
For example, by combining the octahedral and mesh virtual machines, we may specify

the mapping as shown in Program 5.
Mapping constructs such as @mesh(i) and @east are themselves abstractions im-

plemented by a combination of source transformations and mapping libraries. We have
developed libraries of transformations that allow new virtual machines to be defined by
the programmer and combined hierarchically to fit complex application and machine
structures.

6 Compilation Transformat ions

In Section 5 , we showed how the transformation system is used to convert programs
expressed in terms of abstractions into PCN. We now move to the techniques used to
compile PCN programs into executable code. The same transformation system is now
used to specify compilation transformations that are used to compile PCN programs.
Hence, the entire PCN compiler is a concurrent program that may be executed on multiple
computers.

The compilation transformations incrementally transform programs into a canonic~l
form that can be directly encoded into machine instructions. We term this canonical
form Core PCN since it reflects the core ideas of the underlying implementation strat-
egy, namely, fine-grain concurrent processes that communicate and synchronize through
message passing [22]. These processes execute simple atomic actions that may modify
memory.

6.1 Core PCN
All Core-PCN programs have the following form (ki, li, n 2 0):

programname(Args)
declarations
{ ? G1 ->

{ AIY- * *yAklr { I I PI(* . 0) ~ . . - 9 pll(. . 0) } } Y

G, ->
{ A ~ Y - nAkn9 { I I P ~ (* * *) Y - . . Y pln(0 0) } } Y

default ->

In this form, Gi is a PCN guard action, A, is an atomic action, and Pi is a process
invocation. An atomic action is either an assignment or a call to a sequential procedure
written in C, C++, or Fortran. Notice that this canonical form contains neither nested
composition nor sequential compositions of PCN procedures. Core PCN programs simply
receive messages in the guard, modify local state and/or spawn more processes; process
synchronization occurs only in the guard components of a program.

The operational semantic of a Core PCN program consists of a subset of the semantic
for PCN programs [8]; it is identical to that of Strand [21] except that atomic actions
may modify data structures. If any guard Gi is true, the associated atomic actions are
executed, and concurrent processes are then spawned. If all guards are false, then the
default action is executed. Guard evaluation completes only when sufficient information
is available for one of these conditions to be satisfied.

6.2 The Transformations

PCN programs are transformed into Core PCN by a pipeline of five principal transfor-
mations. Each transformation is developed using the transformation system described in
Section 5, and hence can be specified, understood, and maintained independently. The
transformations are described in the sections that follow. Although these descriptions
ignore numerous optimizations that are performed in the PCN compiler, they convey the
basic structure of the compiler.

Expression Removal. This transformation ensures that concurrent processes may
be spawned immediately without waiting for their arguments to be evaluated. It extracts
expressions from various locations in a program text and creates assignment statements
to evaluate the original expressions. In the following examples, the original code is shown
on the left and the transformed code on the right.

P(* -1 P (0)

{ I I { I I :
f(. . .,X+Y,. . .) * { I I NewVariable=X+Y,

f (. . . ,Newvariable,. . .)
1 } 1

1
Example Expression Removal

J

Atomic Action Generation. This transformation moves synchronization operations
out of sequential and parallel blocks and into guards. This allows separate optimization
of synchronization operations when compiling choice blocks. It also simplifies compilation
of arithmetic, memory operations, and sequential subroutines. In particular, they can be
compiled directly to sequential code so as to attain the performance of the underlying
machine language.

The transformation considers statements such as V=M+V which contain monotone
variables for which synchronization is required. For example, if M is monotone, evaluation
must delay until M has a value. The transformation achieves this behavior by generating
a choice block that performs a data check on the variable M. This ensures that the
assignment does not execute until M has a value, at which time it executes as an atomic
action and terminates.

Calls to sequential subroutines expressed in C , C++, or Fortran are handled in a
similar manner. By ensuring that their data is available prior to subroutine entry, these
routines may be treated as atomic actions that terminate immediately.

Example Atomic Action Generation

Nested Choice Removal. This transformation allows the underlying abstract ma-
chine to use a trivial process suspension mechanism that need not deal with suspension in
the middle of procedure execution: Suspension may occur only during guard evaluation.
A nested choice block is replaced with a call to a new procedure. This new procedure
contains the original nested block. Its arguments are the variables shared by the original
block and the enclosing procedure.

{ ? x > y -> f(. . .), ==+

{ ? x > y -> f(. . .),

Example Choice Removal

Sequencing Removal. This transformation allows all PCN procedures to be exe-
cuted as fine-grain concurrent processes. The essence of the idea is to translate sequential
blocks into concurrent blocks with some added synchronization. Sequential semantics are
retained by passing a token from one concurrent process to another in the order specified
by the original program sequencing. Receipt of this token enables process execution.

The transformation achieves this behavior by transforming all sequential and concur-
rent programs into equivalent programs that wait to be enabled (e.g., data&)), execute,
and then forward the token through an appropriate argument (e.g., R).

Example Sequencing Removal

Canonical Form Generation. This transformation translates procedures generated
by the preceding transformations into the Core PCN canonical form. This involves ac-
tivities such as combining nested parallel blocks, ensuring that every choice composition
has a default implication, and wrapping single procedure calls with parallel composition.

P(* .) P (. -1
{ I I { I I f l (. . .) I f2 (* * *) 1 3 {I I fl C . - 1 3

GI(- -1, ==+= f2(. . .),
{I I hl(. -1, h2(* *) 1 g(- - 1 9

h l (. . .),
h2(. . .)

1
Example Canonical Form Generation

6.3 Compiling the Octahedral Example
We illustrate the application of the compilation transformations by showing the code
produced when they are applied to the compute procedure (Program 1). Notice that
this procedure contains both sequential operators and nested choice blocks. The Core
PCN generated for this procedure is presented in Program 6. The following aspects of
the transformed procedure are important:

The auxiliary procedure cornpute.1 is introduced to replace the nested choice block.
Notice that the variables used by the nested choice block are passed to compute.1
as arguments and that an argument declaration for the mesh array is inserted.

A synchronization variable -DE is introduced, to permit other programs to detect
termination of compute. This variable is defined only after execution of compute
is complete.

Synchronization operations (data(nb), et c.) are inserted in compute. I to ensure
that calls to the sequential procedure c-update do not suspend.

compute(step,mesh,ni,ei,si,wi,no,eo,so,wo, DE)
double mesh[], edge[EDGE SIZE];
{ ? step < MAX-STEP ->

{ ; c-get-edge(NORTH,edge,mesh), no=[edge I nol],
c-get-edge(EAST, edge,mesh), eo=[edge I eol 1,
c-get-edge(SOUTH,edge,mesh), so=[edge I sol 1,
c-get-edge(WEST, edge,mesh), wo=[edge I wol],
{I I compute.1 (step,mesh,ni,ei,si,wi,nol ,eol ,sol ,wol , DE) }

1 9

default -> { ; c-dump(mesh), D E = [I)
1

compute. 1 (step,mesh,ni,ei,si,wi,nol ,eol ,sol ,wol , DE)
double mesh[];
{ ? ni ? = [n 1 nil], ei ? = [e 1 eil], si ? = [s (sill, wi ? = [w 1 will,

data(n), data(e), data(s), data(w) ->
{ ; c-update(mesh,n,e,s,w),

{ I I step(step+l ,mesh,nil ,eil ,sil ,wil ,no1 ,eol ,sol ,wol , DE) }
1 9

default -> { ; -DE = [I}
1

Program 6: Core PCN Octahedral Code

Figure 5: Single Computer Function

7 Run-Time Techniques
We conclude our discussion of the techniques used to map high-level concurrent programs
onto parallel computers by describing the techniques used to execute the Core PCN code
produced by the compiler.

Recall from Section 6.1 that Core PCN programs simply receive messages, modify state
and spawn other processes. This basic model of computation is realized by a fine grain,
concurrent, abstract machine. This machine comprises a number of computers connected
via an interconnection network. Each computer is organized as shown in Figure 5 and is
responsible for process scheduling, intercomputer communication, and memory manage-
ment. The machine also incorporates facilities for performance evaluation [I 9, 321.

The abstract machine executes sequences of simple instructions that encode process
control, guard evaluation, and data structure manipulation. In all, there are 33 instruc-
tions whose arguments are typically registers (Ri), program names (P), the number of
arguments in a process (N), etc. Each instruction corresponds to a few physical ma-
chine instructions. Memory management and communication functions are used by the
instructions but are not encoded directly.

7.1 Process Control

The abstract machine maintains an active queue containing runnable processes. Each pro-
cess consists of a set of arguments and the location of the associated code. Conceptually,
the basic execution algorithm is to repeatedly remove a current process from the active
queue, load its arguments into machine registers, and execute the associated Core PCN
procedure. For example, consider a process p(4,3,2,1) executing the following code:

When process p is scheduled, its arguments are loaded into machine registers RO to
R3. Since 4>3, the parallel composition is executed. One legitimate execution strategy is
to spawn processes q and r, place them at the end of the active queue, terminate process
P, and perform a context switch to execute another process from the queue. This strategy
is simple but incurs considerable overhead. Hence, we use an alternative strategy: The
current process proceeds directly to execute process q; only process r is spawned and
placed into the active queue. This strategy is a form of tail recursion optimization, which
can be applied as shown here even when recursion is not involved. It permits the efficiency
of iteration to be achieved in many concurrent programs expressed in recursive form.

Notice that the arguments a and b for process q are already in the correct registers
(R0,Rl) for execution of process q. Hence, in order to execute process q, we use a
single instruction to transfer the variable d to register R2. This optimization can be
reapplied in the execution of process 4. We limit the number of consecutive applications
of the optimization, to guarantee that every process will eventually execute. After a fixed
number of iterations, called a timeslice, a context switch is forced to occur. Table 1
summarizes the instructions for process scheduling and control.

Recall that PCN programs can call sequential procedures written in C, C++, or
Fortran. The compilation transformations ensure that these calls occur as atomic actions
as described in Section 6.2. The calls are encoded by using the call-foreign instruction.
Arguments are always passed to such procedures using call by reference. This can be
achieved efficiently because the PCN implementation records information about data
types and data availability using tagged pointers. Hence, basic data types such as scalars
and arrays can be represented in the same way as in sequential languages. Information
can be passed in calls simply by stripping the tag from a pointer; this is achieved by the
putforeign instruction.

7.2 Guard Evaluation

Figure 6 outlines the structure of the compiled code for a Core PCN procedure (Sec-
tion 6.1). All of the guards for a single procedure are encoded to form a discrimination

Table 1: Process Scheduling and Control

terminate the current process
decide whether to suspend the current process
if the following guard fails, go to L
copy from one register to an argument register
place a value in a process argument
prepare a foreign procedure argument

Atomic
Actions

Process
Spawning

Begin Process
Execution

fault

Tail Recursive

Implication
Bodies

Cali

Figure 6: Compiled Program Form

Table 2: Guard Evaluation

ompare for equality

network. This network simply decides which implication body to execute. There are three
possible outcomes to guard evaluation. If any guard succeeds, then an associated implica-
tion body is executed. This involves immediate execution of the atomic actions, spawning
of concurrent processes, and continued execution of the current process. If there are no
procedure calls in the implication body, the current process terminates and a context
switch occurs. If all guards fail, then the body associated with the default implication
is executed. Finally, there may not be sufficient information available for any guard to
succeed. In this case, the current process must be suspended. If suspension occurs, the
procedure requires the value of one or more monotone variables. If only one variable is
needed, then the process is attached to a queue of suspended processes associated with
that variable. If multiple variables are required, then the process is placed in a global
queue that is rescheduled periodically.

Table 2 summarizes the abstract machine instructions used to encode guard evaluation.
These are the only abstract machine instructions that involve process synchronization.

7.3 Data Structure Manipulation.
The abstract machine provides a variety of instructions to manipulate arrays and mono-
tone variables. Machine instructions are available to build these variables, transfer them
between registers, perform arithmetic, deposit them in processes, etc. Table 3 summarizes
these instructions.

7.4 Communicat ion

Communication is necessary when processes located on different computers share a mono-
tone variable. The algorithms used to implement communication follow from the repre-
sentation chosen for monotone variables in a parallel computer network. Each variable
is located at a single computer; all other instances of the variable are represented by
intercomputer pointers termed remote references [39]. Intercomputer communication is
necessary whenever a guard or assignment operation encounters a remote reference. This
communication is achieved by using three message types: read, write, and value.

Table 3: Data Structure Manipulation and Arithmetic

A read message is issued to request the value of a monotone variable located at a remote
computer. It is generated when a guard test encounters a remote reference. Recall that
the compilation transformations place all synchronization operations in guards. Hence,
read messages may be issued only during guard evaluation. A computer receiving a read
message responds with a value message when the value for the requested variable becomes
available.

The write message is issued when an assignment operation is applied to a monotone
variable represented by a remote reference. The message carries the value that is to be
assigned. A computer receiving such a request completes the assignment at the specified
locat ion.

Messages are received and serviced by a computer whenever a context switch occurs.
Hence, the use of a timeslice to force periodic context switches also has the effect of
allowing overlapping of computation and communication.

Instruction
buildstatic R Type Size
build-dynamic Type R1 R2
buildmonotone R
put-data R Type Size Value
define R1 R2
get-arg R1 R2 R3
get-element R1 R2 R3
put-element R1 R2 R3
copymut R1 R2
coercemut R1 R2
length R1 R2
add R1 R2 R3
sub R1 R2 R3
mu1 R1 R2 R3
div R1 R2 R3
mod R1 R2 R3

7.5 Memory Management

Comment
build a statically sized array
build a dynamically sized array
build a monotone variable
place a literal in a register
define monotone variable (send a message)
extract an argument from a structure
get an element of an array
put an element into an array
snapshot a variable for communication
change a data-type
extract the length of a data structure
addition
subtraction
multiplication
division
modulus

Recall that PCN provides recursively defined data structures and dynamic memory al-
location. Although it is possible to write programs that execute without consuming
memory, a garbage collection algorithm is required in the general case. This algorithm
reclaims memory occupied by data structures that are no longer accessible by any ac-
tive process [$3]. The current PCN implementation uses a simple asynchronous garbage
collection technique for memory management. This technique allows computers to col-

lect independently by maintaining tables of remote references. These tables decouple the
address spaces on different computers [22].

We are currently investigating programming and compiler techniques that will allow
programs to be refined so as to avoid the need for garbage collection. This will allow the
use of simpler memory management techniques.

7.6 Encoding the Octahedron Example
We conclude this description of the run-time techniques by encoding two fragments of
the octahedral application. For clarity, these encodings do not take advantage of all
opportunities for optimization. Program 7 encodes a fragment of the Core PCN compute
procedure given in Program 6. This encoding demonstrates communication of an array on
a stream, calling of sequential C code, and tail recursion optimization. In Program 8, we
encode a fragment of the sphere procedure from Program 4. This encoding demonstrates
the coupling of process spawning and tail recursion optimization.

8 Conclusion

We have described programming and compiler techniques that support the use of ab-
straction in concurrent program design. These techniques allow programmers to specify
applications at a high level using reusable domain-specific abstractions. These abstrac-
tions can encapsulate design decisions concerned with decomposition, communication,
mapping, load-balancing, scheduling, granularity control, and details of the physical ma-
chine.

These programming concepts are supported through compiler techniques that allow
programs expressed in terms of abstractions to be compiled into efficient code for a va-
riety of parallel architectures. Compilation proceeds in three primary stages. The first
stage applies transformations to programs expressed in terms of a variety of abstractions.
This stage yields programs in a simple compositional programming notation that imple-
ment abstractions through communication and synchronization. The second stage applies
generic compilation transformations to generate programs in a machine-independent core
notation. The third stage compiles this core notation to the instruction set of a concurrent,
fine-grain, abstract machine. This machine can be implemented with run-time techniques
based on the use of a portable emulator. Alternatively, the compilation pipeline can be
extended to apply machine-specific transformations that generate native code for a partic-
ular architecture. These transformations can make use of specific machine features such
as fine-grain process support or variable handling hardware.

The compiler is implemented as a small driver program that applies the abstraction,
compilation, and machine-specific transformations. The transformations themselves are
specified in a high-level program transformation notation. This notation is simply PCN
augmented with operations for the manipulation of sets of programs. These operations
provide building blocks that are used to construct libraries of reusable transformations.

All of the transformation, compilation and run-time system techniques described in

compute(step,mesh,ni,ei,si,wi,no,eo,so,wo, DE)
double mesh[], edge11 61;
{ ? step < 1000 ->

{ ; c-get-edge(O,edge,mesh), no=[edge I nol],
. . .)
compute. 1 (step,rnesh,ni,ei,si,wi,nol ,eol ,sol ,wol , DE)

1 9

default -> { ; c-dumpmesh(mesh), D E = [] }
I

compute/l1: / * RO = step, R1 = mesh, R2-9 = ni-wo, R10 = D E */
buildstatic double 16 1 1 / * R11 =edge */
try LO

putdata 1 2 1000 / * R12 = integer(1000) * /
I t0 12 /* step c 1000 */
putdata 12 0 / * R12 = integer(0) * /
putforeign 12 / * 0 */
putforeign 11 / * edge */
putforeign 1 / * mesh */
callforeign c-get _edge 3 / * Call C procedure */
buildstatic int 1 12 / * R12 = mutable integer */
length 11 12 / * R12 = length(edge) */
builddynamic double 1 2 13 / * R13 = mutable */
copymut 1 1 13 /* copy edge to message * /
build-monotone 14 / * R14= no1 ./
buildstatic tuple 2 15 / * R15 = [head I tail] */

put-value 13 /* head = message */
putralue 14 /* tail = no1 */

define 6 15 /* send message on "no" */
. . .
copy 14 6
copy 16 7
copy 17 8
copy 18 9
recurse compute. I /I 1

LO: default 10
putforeign 1
call-foreign cdumpmesh 1
buildstatic tuple 0 1 1
define 10 11
halt

/* no1 */
/* eol * /
/* sol * /
/ * wol */
/ * Branch to compute.1 */
/ * Default implication */
/ * mesh */
/ - Call C procedure */
/*R11 = [I * /
/ * R10 = [I */
/* Terminate and context switch */

Program 7: Encoding the compute Procedure

sphere(c)
{ I I rhombus(c,c,n0,e0,e3,n3), / * Call 1 */

. * .

rhombus(c,c,n2,e2,el ,nl) / * Call 3 */
rhombus(c,c,n3,e3,e2,n2) / * Call 4 */

1

sphere/l :
build-monotone 1
build-monotone 2
buildmonotone 3
buildmonotone 4
buildmonotone 5
buildmonotone 6
buildmonotone 7
buildmonotone 8
fork rhombus/6

put-value 0
put-value 0
put-value 1
put-value 8
put-value 3
put-value 2

fork rhombus/6
...
fork rhombus/6

put-value 0
put-value 0
put-value 5
put-value 4
put-value 7
put-value 6

copy 0 1
recurse rhombus/6

/* RO = C */
/ * R1 = no */
/ * R2 = n3 */
/ * R3 =e3 */
/ * R4 = e2 */
/ * R5 =n2*/
/ * R6= n l */
/ *R7=e l */
/ * R8=e0 */
/ * Call 1 */
/* c */
/* c */
/ * no */
/* e0 * /
/ * e3 */
/* n3 * /
/*Call 2 * /
/* Arguments for Gall 2 */
/ * Call 3 * /
I* c * /
/ * c */
/* n2 */
/* e2 */
/* e l * /
/* n l * /
I* c */
/ * Call 4 */

Program 8: Encoding the sphere Procedure

this paper have been implemented and are incorporated in a public-domain program de-
velopment toolkit. The toolkit operates on a wide variety of networked workstations,
multicomputers and shared-memory multiprocessors. It includes tools for defining pro-
gram transformations, compiling concurrent programs, checking programs, debugging,
performance analysis, and program animation. The toolkit has been used to design and
implement substantial applications in several domains, including climate modeling and
fluid dynamics [lo, 271. These programs use abstractions to coordinate the execution of
thousands of lines of pre-existing C and Fortran code. Experimental studies show that
the codes operate with predictable and impressive performance on a wide range of parallel
computers.

The toolkit can be obtained by anonymous FTP. Both the toolkit and on-line docu-
mentation are located in directory pub/pcn at info.rncs.anl.gov and in directory pcn at
sampson.caltech.edu.

9 Acknowledgments

We are grateful to Gil Weigand of DARPA, Gary Koob of ONR, and Nat Macon of NSF
for their interest, encouragement and support. This work owes a great debt to other
members of the research groups at both Argonne National Laboratory and the California
Institute of Technology. In particular, Steve Tuecke is responsible for the development
of the PCN emulator, Sharon Brunett and Dong Lin for the compilation transformations
and compiler development, and Bob Olson for the network implementation and virtual
machine implement ation.

References

[I] Agha, G., Actors, MIT Press, 1986.

[2] Babb, R., Parallel processing with large grain data flow techniques, IEEE Computer,
17(7), 55-61, 1984.

[3] Backus, J., Can programming be liberated from the von Neumann style? A functional
style and its algebra of processes, CA CM, 21, 613-41, 1978.

[4] Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson,
J., and Stevens, R., Portable Programs for Pa rallel Processors, Holt , Rinehart , and
Winston, 1987.

[5] Boyle, J., and Muralidharan, M., Program reusability through program transforma-
tions, IEEE Trans. Softw. Eng., SE-10(5), 574-588, 1984.

[6] Carriero, N., and Gelernter, D., How to Write Parallel Programs, MIT Press, 1990.

[7] Chandy, K. M., and Misra, J. Parallel Program Design, Addison-Wesley, 1988.

[a] Chandy, K. M., and Taylor, S., An Introduction to Parallel Programming, Jones and
Bartlett, 1991.

[9] Chen, M., Choo, Y., and Li, J., Compiling parallel by optimizing perfor-
mance, J. Supercomputing, 1(2), 171-207, 1988.

[lo] Chern, I., and Foster, I., Design and parallel implementation of two methods for
solving PDEs on the sphere, Proc. Conf. on Parallel Computational Fluid Dynamics,
Stuttgart , Germany, Elsevier Science Publishers B.V., 1991.

[ll] Clark, K., and Gregory, S., A relational language for parallel programming, Proc.
1981 ACM Conf. on Functional Programming Languages and Computer Architec-
tures, 1981, 171-178.

[12] Clocksin, W ., and Mellish, C., Programming in Prolog, Springer-Verlag, 1981.

[I 31 Cohen, J., Garbage collection of linked data structures, Computing Surveys, 13 (3),
341-367, 1981.

1141 Cole, M., Algorithmic Skeletons: Structured Management of Parallel Computation,
MIT Press: 1989.

[15] Dally, W. J., et al., The J-Machine: A fine-grain concurrent computer, Information
Processing 89, G. X. Ritter (ed.), Elsevier Science Publishers B.V., North Holland,
IFIP, 1989.

[16] Dijkstra, E. W., Guarded commands, nondeterminacy and the formal derivation of
programs, CA CM, 18, 453-457, 1975.

[17] Dongarra, J. and Sorenson, D., Schedule: Tools for developing and analyzing parallel
Fortran programs, The Characteristics of Parallel Algorithms, MIT Press, 1987.

1181 Foster, I., Automatic generation of self-scheduling programs, IEEE Trans. Parallel
and Distributed Systems, 2(1), 68-78, 1991.

[19] Foster, I., Kesselman, C., and Taylor, S., Concurrency: Simple concepts and powerful
tools, Computer Journal, 33(6), 501-507, 1990.

(201 Foster, I., and Stevens, R., Parallel programming with algorithmic motifs, Proc. Intl
Conf. on Para8el Processing, Penn. State Univ. Press, 1989.

(211 Foster, I. and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice-
Hall, Englewood Cliffs, N.J. 1989.

[22] Foster, I. Tuecke, S., and Taylor, S., A portable run-time system for PCN, Mathe-
matics and Computer Science Division, Argonne National Laboratory, Tech. Rept.
ANLJMCS-TM-137, July 1991.

[23] Gajski, D., Padua, D., Kuck, D., and Kuhn, R. A second opinion on dataflow ma-
chines and languages, IEEE Computer, 15(2), 58-69, 1982.

[24] Gregory, S., Parallel Logic Programming in PARL OG, Addison-Wesley, 1987.

[25] Gregory, S., Foster, I., Burt, A., and Ringwood, G., An abstract machine for the
implementation of PARLOG on uniprocessors, New Generation Computing, 6, 389-
420, 1989.

(261 Halstead, R., Multilisp - A language for concurrent symbolic computation, ACM
Trans. Prog. Lung. Syst., 7(4), 501-538. 1985.

[27] Harrar, H., Keller, H., Lin, D., and Taylor, S., Parallel computation of Taylor-vortex
flows, Proc. Conf. on Parallel Computational Fluid Dynamics, Stuttgart, Germany,
Elsevier Science Publishers B.V., 1991.

[28] Henderson, P., Functional Programming, Prentice-Hall, 1980.

[29] Hoare, C., Communicating sequential processes, CA CM, 21 (8), 666-677, 1978.

[30] Houri, A. and Shapiro, E., A sequential abstract machine for Flat Concurrent Prolog,
Weizmann Institute Technical Report CS86- 19, Rehovot , 1986.

[31] Kelly, P, Functional Programming for Loosely-Coupled Multiprocessors, MIT Press,
1989.

[32] Kesselman, C., Integrating Performance Analysis with Performance Improvement in
Parallel Programs, Ph.D. thesis, UCLA, 1991.

[33] Martin, A., The torus: An exercise in constructing a processing surface, Proc. Conf.
on VLSI, Caltech, 52-57, Jan. 1979.

[34] Parnas, D., On the criteria to be used in decomposing systems into modules, CACM,
15(12), 1053-1058, 1972.

[35] Safra, S., and Shapiro, S., Meta-interpreters for real, Concurrent Prolog: Collected
Papers, MIT Press, 1987.

[36] Seitz, C. L., Multicomputers, Developments in Concurrency and Communication,
C.A.R. Hoare (ed.), Addison-Wesley, 1991.

[37] Smith, R. D., Dukowicz, J. K., and Malone, R. C., Parallel ocean general circulation
modeling, Ph ysica D (to appear).

[38] Steele, G., Rabbit: A compiler for Scheme, MIT A1 Lab TR/474, 1978.

[39] Taylor, S., Parallel Logic Programming Techniques, Prentice-Hall, Englewood Cliffs,
N.J., 1989.

[40] Warren, D.H.D., Applied logic - its use and implementation as a programming tool,
SRI International Tech. Rep. 290, 1983.

(411 Wirth, N., Program development by stepwise refinement, CACM, 14, 221-227, 1971.

[42] Yang, J., and Choo, Y., Parallel program transformation using a metalanguage, Proc.
Conf. on Principles of Programming Languages, 11-20, 1991.

